Fugacity swimming

Alethia Bautista Campos	A01167791
Arturo Bolaños Colín	A01373599
Cesáreo Roldán Ortiz	A01260362
Krystell Magallanes Pichardo	A01168048
Dante Sánchez Vera	A01167912
Víctor Tomás Pérez Vieyra	A01168057

Introduction

- There is a risk associated with exposure to disinfection byproducts (DBPs)
- DBPs are formed when organics present in water react with the disinfectants.
- Cancer, respiratory effects and reproductive effects.

Fugacy Model

- Most prevalent DBPs in water are trihalomethanes (THMs) and haloacetic acids (HAAs).
- Three main exposure routes: ingestion, inhalation and dermal contact.
- Models to estimate exposures to DBPs in swimming pools: SWIMODEL and a fugacity exposure model.

Fugacity model

The escaping tendency of a chemical to leave one medium in preference for another.

 $C = f \cdot Z$

Where:

C = concentration f = fugacity Z = fugacity capacity

Fugacity Model

- → The use of fugacity in contaminant fate modeling allows simultaneous consideration of all the media and processes occurring in the environment.
- → Fugacity capacities are calculated from the physco-chemical properties
- → Sometimes, depending on its concentration, we need to consider them in our balance equations
- → Variability (aleatory uncertainty) is in every case of these model

Uncertainity of the model

Transport between water and air.

$$D_{12} = \frac{1}{\frac{1}{k_G A_{12} Z_1} + \frac{1}{k_L A_{12} Z_2}}$$

(2)

where

- k_G is the air side mass transfer coefficient,
- A_{12} is the surface area of the water,
- Z_1 and Z_2 are the fugacity capacities for the air and water compartments, respectively; and
- k_L is the water side mass transfer coefficient.

Fuzzy-Based Models.

	Pool 1	Pool 3	Pool 5	Source of Equation
k₀ cm/hr	27.0	25.7	25.1	[25], [26]
	51.0	48.5	47.5	[27] [28]
	76.5	59.2	66.6	[29] [28]
	26.9	25.6	25.1	[30] [28]
	26.6	26.6	26.6	[31] [32]
	73.7	63.0	66.1	[26]
	43.8	34.5	38.2	[28] [30]
	Pool 1	Pool 3	Pool 5	Source of Equation
k _{l.} cm/hr	0.58	0.58	0.58	[24]
	12.1	12.1	12.1	[33]
	61.1	46.2	41.5	[34]

There are four basic steps in the DSW algorithm:

- Select a value α in the membership functions.
- Find the intervals in the input membership functions that correspond to this α.
- Using interval operations, compute the interval for the output membership function for the selected α-cut level.
- Repeat these steps for different values of α to build fuzzy result.

Figure 1. α -cuts on k_{α} and k_{L} fuzzy membership functions (Modena Pool 1)

		Pool 1		Pool 3		Pool 5	
	a-cut levels	left	right	left	right	left	right
k _G (cm/hr)	0	20	99	20	99	20	99
	0.25	21.7	93.4	21.4	90.0	21.3	90.9
	0.5	23.3	87.7	22.8	81.0	22.5	82.8
	0.75	25.0	82.1	24.2	72.0	23.8	74.7
	1	26.6	76.5	25.6	63.0	25.1	66.6
k _L (cm/hr)	a-cut levels	left	right	left	right	left	right
	0	0.58	61.1	0.58	46.2	0.58	41.5
	0.25	3.47	48.9	3.47	37.7	3.47	34.2
	0.5	6.36	36.6	6.36	29.2	6.36	26.8
	0.75	9.25	24.4	9.25	20.6	9.25	19.5
	1	12.14	12.1	12.14	12.1	12.14	12.1

TABLE III. INTERVAL VALUES FOR KG AND KL

Fuzzy model results

In a similar fashion, we use this fuzzy results to calculate fugacity, mass transport and use those results to calculate the concentration of Chloroform in the air and in the pool.

Conclusions

- → Fuzzy based models, for identifying DTP
- → DSW Algorithm (Fugacity due to mass transport)
- → There is a bigger amount of Chloroform on the pools that use DBPs and their outsides, that by long time could cause sickness.
- → Fuzzy-based environmental models require less computational complexity while providing a better representation of our true understanding of a model when data are lacking